LEETCODE SERIES || DAY 19 || (33) Search in Rotated Sorted Array

1–2 minutes

read

Day 19 Leet code series, today we will be picking the problem Search in Rotated Sorted Array (https://leetcode.com/problems/search-in-rotated-sorted-array/).

There is an integer array nums sorted in ascending order (with distinct values).

Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].

Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.

You must write an algorithm with O(log n) runtime complexity.

Example 1:

Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4

Example 2:

Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1

Example 3:

Input: nums = [1], target = 0
Output: -1
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int l = 0, r = nums.size()-1;
        while (l <= r) {
            int mid = (l+r) / 2;
            if (target == nums[mid])
                return mid;
            // there exists rotation; the middle element is in the left part of the array
            if (nums[mid] > nums[r]) {
                if (target < nums[mid] && target >= nums[l])
                    r = mid - 1;
                else
                    l = mid + 1;
            }
            // there exists rotation; the middle element is in the right part of the array
            else if (nums[mid] < nums[l]) {
                if (target > nums[mid] && target <= nums[r])
                    l = mid + 1;
                else
                    r = mid - 1;
            }
            // there is no rotation; just like normal binary search
            else {
                if (target < nums[mid])
                    r = mid - 1;
                else
                    l = mid + 1;
            }
        }
        return -1;
    }
};

Leave a comment